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The stress in a suspension of incompressible deformable particles exceeds that 
which would exist in the pure incompressible liquid undergoing the same flow by 
the product of the volume concentration of the particles and the tensor 
jiik - 2q0 E$) where qo is the viscosity of the pure liquid, Pik is the average stress and 

the average rate of strain in particles in the flowing suspension. For a dilute 
suspension of viscoelastic spheres these tensors can be determined by using an 
adaptation of Jeffery’s solution of the problem of an isolated rigid ellipsoid. In  
steady laminar flow, the material of each sphere is continuously deformed and 
rotates within an ellipsoidal boundary of fixed dimensions and orientation. 
Approximate expressions are obtained for the steady-rate viscosity and normal 
stress differences in terms of the dynamic viscosity and dynamic rigidity func- 
tions of the suspension. These are valid either when the rate of shear is sufficiently 
small or when the ratio of the dynamic viscosity of the spheres to qo is sufficiently 
large. The three normal stress components are all unequal. In slow steady elonga- 
tion of the suspension, the spheres suffer static deformation into prolate spheroids 
so the elongational viscosity depends only on their static elastic properties. It 
appears from the investigation of special cases, however, that this static deforma- 
tion is not possible for rates of elongation above a critical value. 

1. Introduction 
A phenomenological approach to the study of isotropic elastoviscous liquids is 

provided by the theory of ‘ simple fluids with fading memory ’ of Coleman and 
Noll, but this theory only gives limited information on account of its extreme 
generality. In  order to obtain further results, it is necessary to construct theories 
which take some account of the structure of these liquids. Several such theories 
have been developed for liquid polymers and polymer solutions which take 
explicit account of the chain structure of the molecules. Difficulties arise, how- 
ever, and these have only been resolved by making mechanical or hydrodynamic 
assumptions which are difficult to verify. When such theories fail to agree with 
observation, it is never clear whether the fault arises from the physical model or 
from these assumptions. 

A more satisfactory approach can be made by choosing a simplified physical 
model for which the mathematical calculations can be carried out exactly. The 
multi-lattice theory for strong polymer solutions developed by Lodge (1964) falls 
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into this category, and its failure in points of detail can be ascribed with certainty 
to shortcomings of the model. Various simple models for dilute polymer solutions 
have been used by Frohlich & Sack (1946), Cerf (1951,1952) and Giesekus (1962). 
In  Cerf's treatment, the model consists of a suspension of viscoelastic spheres in a 
viscous liquid: a reasonable representation for a polymer solution which is so 
dilute that the coiled chains are effectively isolated. He assumed rather special 
viscoelastic properties for the spheres and investigated the behaviour of the 
suspension under oscillatory motion of small amplitude. The same model is used 
in the present work, but with general properties for the spheres, and the treatment 
is not restricted to small rates of strain. 

In  $ 2  a basic relationship, equation (9), is derived for a suspension of particles 
of any shape and viscoelastic properties. The only assumptions made are that 
there is no slip at  liquid-particle surfaces, that liquid and particles are incom- 
pressible and that they possess negligible inertia. The last two assumptions do 
not usually restrict the validity of the results, although there are cases (such as 
compressional wave motion and other types of wave motion a t  high frequency) 
which require fuller treatment. In  the application of this relationship, however, 
it  is assumed that the concentration of the particles is small. 

Rectangular Cartesian co-ordinates are used throughout and tensors (stress, 
rate of stra7in, etc.) are denoted by small letters (pik, e&) when they refer to the 
material of the particles, and by small primed letters (pik, e$) when they refer to 
the liquid part of the suspension. The symbols p ,  p' are used to denote arbitrary 
hydrostatic pressures. Capital letters are used for tensors referring to the whole 
suspension. Material constants and functions (rigidity, viscosity, etc.) are denoted 
by Greek symbols (p, 7) without suffix when they refer to the whole-suspension, 
with suffix 1 when they refer to  the material of the particles and with suffix zero 
when they refer to the liquid. In  accordance with convention, p and 7 are primed 
when they refer to the dynamic functions. For example, when the material of the 
particles is subjected to small oscillatory strain of the type 

e,, = e,,(O) C O S W ~ ,  (1)  

(2) 

the formal expression for the stress is written 

= 2,4(W) eik(0) cos &- 27;(w)f3 eik(0) sin wt. 

2. The stress in a suspension of deformable particles 
It is first necessary to consider the relation between the macroscopic and 

microscopic motions of a flowing suspension of deformable particles of any shape. 
At a given instant of time, the difference in velocity between two adjacent points 
in a particle in the suspension can be written as 

dv, = e@dxj - Cij dx,, (3) 

where e# and & are respectively the local rate of strain and vorticity in the 
particle. Similarly for two adjacent points in the liquid part of the suspension 

dv, = e'ic,f)dxj - 5'. t j  dx 1' (4) 
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Thus if there is no slip between liquid and particles and if the origin is taken a t  an 
arbitrary point in the suspension, the difference I$ between the velocity at the 
point xi and the velocity a t  the origin is given by 

= E$’ X* - Zi, x,, (5) 
where E$) is the average of the rate of strain of both solid and liquid parts along 
the line joining xi to  the origin at  the instant of time under consideration, and 
zik is the corresponding average for the vorticity. The symbol &k will be used for 
the corresponding average of the stress. 

It will be assumed, in the first instance, that these three line averages attain 
sensibly constant values as the point xi moves in any direction away from the 
origin to distances of the order of a certain length I; and the symbols ,%(ilk), Zik, Pik 
will now be reserved for these constant values. Equation ( 5 )  shows that the motion 
may now be regarded as homogeneous in a local region round the origin of dimen- 
sions of order I, and also that can be identified as the local macro- 
scopic rate of strain and vorticity. Furthermore, since the line averages over 
lengths of order I ,  E(ilk), z i k ,  Pik are constants, it follows that they are equal to the 
averages of the corresponding tensors over areas or volumes of dimensions of 
order I situated within distances of order I from the origin. Thus the local macro- 
scopic rate of strain may be written as 

and 

Ei2 = (l-c)ij;$)+c$&, (6) 

where the bars denote volume averages and c represents the volume concentra- 
tion of the particles. 

The component of force in the k-direction exerted by the suspension on one 
side of a plane area normal to the i-direction is the area integral of the correspond- 
ing stress component (pik in the particles and l);k in the liquid) or the product of 
the area and the area average of the stress component. The latter is equal to &k 

and also equal to the volume average, provided the dimensions of the area are of 
order 1. Thus there is a local macroscopic stress equal to q k ,  and 

q k  = (1 - c)&, f CPik. 

Pik + p’8ik = 290 @, 

ek f P8ik = 270 Ei2 + C(P.$k- 2’?,?0??$%), 

(7) 

(8) 

(9) 

But a t  any point in the liquid part of the suspension 

where qo is the viscosity of the liquid. Equations (6), (7) and (8) together give 

where P has been written for the product of 1 - c and p‘. Since the materials are 
incompressible, both pik and & are indeterminate to the extent of an arbitrary 
constant hydrostatic pressure, so the magnitudes of ji’ and P are arbitrary. It 
may be noted that the last term in (9) effectively represents the addition to the 
stress produced by the presence of the particles. 

The average stress I)ik in a particle is related to the distribution of force over its 
surface. If represents the force per unit area a t  a given point on the surface and 
ni is the unit vector along the outwards drawn normal, 

Ti = pi fnj .  (10) 
18-2 
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Any variation of pik within the particle is subject to the condition that pii,i shall 
be zero, so 

With these two equations, the average stress can be obtained by application of 
Pik = a(Pipk)laxj.  (11) 

where 'v is the particle volume and dX an element of surface area. Furthermore, 
since 

the average rate of strain is given by Green's theorem as 

Equation (9) has previously been given as equation ( 1  1) of a paper by Peterson 
& Fixman (1963) concerned with the special case of spherical particles, and equa- 
tion (12) above is equivalent to their equation (14). It seems, however, that their 
argument is unnecessarily involved, and they advance only intuitive reasons for 
taking the macroscopic tensors equal to the corresponding volume averages. In  
the case of rigid particles the internal distribution of pik is indeterminate, but its 
average value is given by (12) so that (9) can still be employed. Here E$? is zero 
and the expression for ek becomes equivalent to that given in equations (41) and 
(42) of a paper by Giesekus (1  962). 

For very dilute suspensions of identical particles, pik and E $ .  can be replaced 
by the corresponding tensors for a single particle in pure liquid undergoing the 
macroscopic motion of the suspension (5). In  solving the single-particle problem 
it is assumed that the slow-motion condition = 0 holds in the liquid, and to- 
gether with equation (8) this gives the linear Stokes equations. Similarly it is 
assumed that pij,i = 0 holds in the particle, and this relation has to be used 
together with the constitutive equation of its material. A velocity field has then 
to be found which (a )  approaches the undisturbed field a t  great distances from 
the particle, (b)  is continuous across the particle-liquid boundary and (c) is such 
that the distribution of force exerted by the liquid on the particle surface balances 
the stress distribution within it. For a rigid particle it is only necessary to solve 
the Stokes equations subject to conditions (a )  and (b ) ,  and such solutions have 
been given for ellipsoidal particles by Jeffery (1922) together with expressions 
for the surface force Ti. 

More complicated methods of determining the macroscopic stress in dilute 
suspensions have been used by Einstein (1906, 1911), Jeffery (1922), Burgers 
(1938) and Landau & Lifshitz (1959). Objection may be raised, however, to all 
these methods in that Pik is obtained from the long-range disturbance produced 
by a single particle as calculated using the linear Stokes equations. Now in the 
derivation of those equations inertia effects have been neglected ( p & j  being set 
equal to zero), and it has been pointed out by Saito (1952) that this approximation 
leads to solutions which are always incorrect a t  great distances from the particle 
however slow the motion may be. Exact solutions, obtained from the full Navier- 
Stokes equations, are not at present available. On the other hand, the linear 
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Stokes equations give solutions which are correct in the neighbourhood of the 
particle when the motion is slow, and the local flow is only needed for the deter- 
mination of pi,, and Z\? for use in (9). In  fact all the results obtained for special 
cases by the authors cited are identical with those obtained by use of (9) although, 
as indicated by Peterson & Fixman (1963), application of their methods must in 
general lead to anomalous results. 

At present it is only possible to apply equation (9) in this limiting case of 
extreme dilution, and since pi,, and 22;; are then independent of the concentration 
c, the increase in pilc produced by the presence of the particles is simply propor- 
tional to  c. 

The use of (9) is not restricted to problems in which the flow of the suspension 
as a whole is homogeneous: solutions of other problems can be obtained by apply- 
ing the equation to sufficiently small elements of the suspension. It must be 
remembered, however, that an assumption was made in the derivation of (9): 
that the line averages of the rate of strain, vorticity and stress tensors are sensibly 
constant over distances of the order of a certain length 1. This assumption, which 
implies that there is some scale on which the flow of the suspension may be 
regarded as homogeneous, is justifiable if the calculated variations of EL?, Zik, 
pi,, are found to be altogether negligible over distances of order ale, where a is a 
certain average dimension of the particles. For in this case it is always possible 
to construct a line of length I much greater than a/c (the condition that it shall 
intersect a large number of particles) and yet so short that the general flow con- 
ditions (characterized by the macroscopic tensors E$g, Zik, &) remain sensibly 
constant along its length. This corrects the condition arbitrarily laid down by 
Peterson & Fixman (1963) that the variations must be negligible over distances 
of order 10a. Even in problems where the flow of the suspension as calculated 
using (9) is homogeneous throughout, the validity of the results is evidently 
restricted by the condition that the smallest dimension of the whole body of the 
suspension shall be much greater than a/c. 

3. Ellipsoids with moving boundaries 
The problem of a rigid ellipsoid in a sea of liquid undergoing homogeneous 

deformation has been solved by Jeffery (1922). His equation (34) gives an ex- 
pression for the force per unit area exerted by the liquid on the surface of the 
ellipsoid, and this may be written in any co-ordinate system as 

= -@Ini + vo A,nj, (15) 

where p" is a constant of arbitrary magnitude and A<, is a certain deviatoric 
tensor. The components of this tensor in a fixed co-ordinate system with axes 
instantaneously coinciding with the ellipsoid axes are related to the quantities 
A ,  B, C, etc., appearing in Jeffery's equations (25) and (26) by the scheme 
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where a, is the radius of a sphere which has the same volume as the ellipsoid. 
Thus for this co-ordinate system his equation (25) gives 

with similar expressions for A,, and A,, obtained by cyclic change of indices. 
Here eik is used to denote the rate of strain in the undisturbed liquid, and g;, gip 
g; are defined as integrals of the type 

where A' = {(af+h)(a$+h)(a;+h)): 

and al, a2, a, are the ratios of the ellipsoid semi-axes to a,. Expressions for the 
remaining tensor components can be obtained from Jeffery's equation (26) after 
that has been corrected for some errors in transcription. For the case in which the 
ellipsoid is not rotating these take forms of the type 

where [ik is the vorticity of the undisturbed liquid, g,, g2, g, are integrals of the 

and g;, g;, g; are integrals of the type 

Here the case to be considered is of a non-rigid particle with a changing ellip- 
soidal surface enclosing a fixed volume $ T U ~  with fixed centre a t  the origin, 
surrounded by liquid which has the undisturbed flow 

v! = e!(Yxi-Y!.x 23 23 i- (22) 

Any such motion of the particle surface could be produced by a suitable homo- 
geneous deformation of the material within it. The internal and surface velocity 
could then be written as 

since the rate of strain and vorticity a t  every point are here equal to their average 
values. But equation (14) shows that the average rate of strain of a particle is 
always fixed by the velocity distribution over its surface, and the same applies to 
the average vorticity which is given by a similar expression to (14) but with the 
positive sign replaced by a negative one. Thus (23) always applies to the surface 
velocity so long as the changing surface remains ellipsoidaI, irrespectiveIy of the 
internal velocity distribution. 

The disturbance of the liquid flow produced by the particle will be denoted by 
Av;. Then as there is no slip between particle and liquid, at the surface 

Vi = xi - Cij xi (23) 

- 
Avi = (E$ - e$)) xi - (l&. - c&) xj. (24) 
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Now Avi is completely determined by this surface condition and the condition 
that it shall vanish at great distances away from the particle. In  the case of a rigid 
non-rotating ellipsoid E$$) and Eij would both vanish. Thus if the surface of the 
particle actually moves with the velocity (23), it follows from (22) and (24) that 
the disturbance is the same as would be produced by a rigid, non-rotating ellip- 
soid in a liquid undergoing the undisturbed flow 

(25) 

although the actual undisturbed part of the flow is given by (22).  
Jeffery’s results for rigid ellipsoids can thus be adapted to apply to particles 

with moving boundaries. It must be noted, however, that the surface force on a 
rigid ellipsoid given by (15) can be divided into two parts: one due to the un- 
disturbed flow (22)  and one due to the disturbance Avi. Apart from arbitrary 
hydrostatic pressures, these are 

2voe$)nj and vo(Aij - 2e$9 nj. 

In  the case of an ellipsoid with moving boundary, the surface force can again be 
divided into parts due to the undisturbed flow and the disturbance Av;. The 
former is unaltered, but the latter is calculated as for a rigid, non-rotating ellip- 
soid after substituting e i t ) -  for eX) and Cik - Cik for &k in accordance with 
(25) .  On combining the parts, the surface force is found to be 

v’! z = (eW--(.l) a j  ezj )xj-(Gj-Eij)xj 

Ti = -prrni + q0(Alj + 2 4 9  nj, (26)  

where Aik represents the tensor Aik as calculated for an undisturbed flow (25) 
instead of the actual undisturbed flow (22). A similar adaptation of Jeffery’s 
results to ellipsoids with moving boundaries has been made by Cerf (1951) for the 
particular case of laminar flow and nearly spherical boundaries, but he has missed 
the explicit appearance of B y  in (26).  It may have been noticed that the symbols 
SI?, &k have here been used for averages in a single particle, while in the previous 
section they were used for averages over all particles in a suspension. No confusion 
will arise in the following work, however, since only suspensions of identical 
particles will be considered. 

4. Viscoelastic spheres, steady laminar flow 
The results of the last section may be used to find the solution of the problem 

of a single viscoelastic sphere in a sea of liquid which has the undisturbed motion 

V; = KX,, VL = 0, Vi = 0. (27) 

The problem is approached by investigating the possibility of a steady-state 
solution in which the material of the sphere is at every instant under homogeneous 
deformation and undergoing continuous rate of strain and rotation within a 
constant ellipsoidal boundary having one axis along the 2,-direction and the 
other axes making an angle 8 with the xl- and 2,-directions respectively. The 
lengths of the corresponding semi-axes will be written as a3uo, aluo, uZaO where 
u0 is the radius of the undeformed sphere, and since the material is considered to 
be incompressible ala,a, = 1.  (28) 
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The type of motion here envisaged for the material of the deformed sphere may 
be illustrated as follows. Suppose that the sphere (with centre at the origin) is 
first subjected to a homogeneous deformation such that each material point 
which originally occupied the position xi, x;, x; now occupies the position alx;, 
a2x;, a3x& Then from time t = 0 onwards let it undergo a continuous deformation 
such that the co-ordinates xl, x2, x3 of the material point at any time t are given by 

x1 = al(xi cos vt - xh sin vt), 
x2 = .,(xi sin vt + x; cos vt), 
x3 = a3x;, 

where v is a constant. This deformation is a t  every instant homogeneous and the 
material point which originally occupied the position xi, x;, x; lies at  all times on 
the ellipse 

Thus material points which were originally at  the surface of the sphere now lie a t  
all times on the surface of the ellipsoid with semi-axes also, a2ao, a3u0 along the 
xl-, x2-, x3-axes respectively, so the material as a whole is continuously moving 
within this boundary. Prom (29a) the velocity field is obtained as 

(x;/a;) + (xya;) = x;2+x;2, x3 = a3x;. 

v1 = - a1 vx2/a2, v2 = a2 vxl/al, v3 = 0. (29b) 

(30) 

(31) 

The only non-zero components of the rate of strain and vorticity are therefore 

e\t = eit) = - [(a;-- a;) v]/2a1a2, 

c12 = - c21  = [(a; + 4) v1/2a1a2- 

Since both the strain and rate of strain are at  all times homogeneous, the stress 
within the deformed sphere is uniform so that the condition pii,j = 0 is satisfied. 

Equations (29a)-(31) refer to motion within an ellipsoidal boundary having 
axes along the co-ordinate axes, and from these it would be possible to obtain 
corresponding equations for the case in which the al- and a2-axes are inclined a t  
an angle 8 to the xl- and x2-axes respectively. At this stage, however, it  is simpler 
to keep to a co-ordinate system with axes along the ellipsoid axes, and in this 
system the undisturbed motion (27) for the liquid becomes 

v; = K ( X ~  sin 8 cos 8 + x2 cos2 O), 
v; = - K(xl sin2 8 + x2 sin 8 cos 8) ,  

v; = 0. (32) 

The disturbance of this flow by an ellipsoid with boundary velocity (29b) is the 
same as that produced by a rigid, non-rotating ellipsoid in an undisturbed flow 
of the form (25) with &? and cik given by (30) and (31), and e2f and cik derived 
from (32). The only non-zero components of the rate of strain and vorticity for 
this flow are 

e::) = - ebt) = &K sin 28, 

e i t )  = e$:) = &K cos 28+ [(a; - a:) v]/2a1a2, 

(5i2 = - 

(33) 

(34) 

(35) = - &K - [(a; +a$) Y]/2ala2, 
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and these can be used in (17) and (19) to obtain the components of A i k .  All of 
these vanish except A;,, Ad2, AA3, Ai2, Ah,. 

In  order that the steady state may exist, the surface force given by (26) must 
balance the uniform stress pik in the material undergoing the motion (29 b). This 
gives the conditions 

where 

} (36) 
PI1 = -P + T o  P22 = - p  + TO A L 2 3  p33 = - p  + 7 0  

P12 = 70A;2-70[(~!2 , -~; )~1/~1~2,  P21 = a o ~ d 1 - 7 0 ~ ~ ~ 2 , - ~ ~ ~ ~ 1 / ~ 1 ~ 2 ,  

with all other stress components zero. Elimination of the arbitrary quantity p 
between the first three equations and use of ( 17) gives 

p , ,  -p22  = 570 I K  sin 28, 

pll +p22  - 2p33 = 57, J K  sin 28, 

(37) 

(38) 

(39) 

(40) 

I = - - -  2 s';+g;p 
5 gig; + g;g; + g;g; ' 
2 g;-g; 
5 gig; + g; g; + gig; * 

J = -  

But p12 must be equal to p2,, so it follows from the last two equations in (36) that 
Ai2 must be equal to Ah,. With (19) this gives the condition 

cos20 -, (41) 1: (1  - z p j  
a; - a; v =  -- 

and the shear stress components are then given by (36) as 

where (43) 

Now the normal stress differences appearing in (37) and (38) and the shear 
stress components in (42) are all determined by the constitutive equation of the 
material of the particle as functions of the parameters a,, a2, Y of the deformation 
(29a), and that deformation gives rise to no other stress components. There are 
thus four equations, (37), (38), (41), (42), which involve the four parameters 6, aI, 
a2, v. If real solutions can be obtained for all these parameters, the steady state 
can exist. In  that case the uniform stress in the deformed sphere given (apart from 
an arbitrary hydrostatic pressure) by (37), (38) and (42) may be used as p ik  in (9) 
to obtain the stress in a dilute suspension of viscoelastic spheres undergoing the 
flow (32). On transforming back to the original co-ordinate system so that the 
flow of the suspension is now in the s,-direction and given by (27), the following 
expressions are obtained for the stress components: 
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where AP,, represents the excess of the components Plz, P,, over the value T ~ K  

which they would have in the pure liquid undergoing the same rate of shear K .  

The remaining stress components are zero. 

5. Special properties for the spheres, small deformations 
When the suspension is undergoing laminar flow, there are certain conditions 

under which the deformation of the spheres is small. The solution of (37), (38), 
(41), (42) is then much simplified because the theory of first-order (linear) visco- 
elasticity can be applied to the material of the spheres, and because the functions 
I ,  J ,  K can be expressed in series form. It is convenient to write 

el = al- 1, e, = a,- 1, e3 = a3- I 

and it then follows from (28) that 

(47) 

el + e2 + e3 + e1e2 + e2e3 + 6361 + ele,e3 = 0. 

Since el, e2, e3 are here small, g;, gi, gi, g; can be expanded in series, and these can 
be inserted in (39), (40), (43) to give 

(48) 

I = 1 + +(el + e,) - h ( e f  + ei) -t- $$e: + O(e3), 

K = 1 + +(el + e,)  + fg(e2, + et)  - #!!el + O(e3), 

149) 

J = +(el-e,)+&(e2,-e~)+O(e3), (50)  

(51) 

where e denotes the numerically largest of the three quantities el, e2, e3. 
In  this section, special viscoelastic properties are assumed for the spheres: the 

stress is taken to be that which would exist in a purely elastic material under the 
same strain with an addition proportional to the rate of strain. Now when a 
sphere is deformed into an ellipsoid, the axes of the latter are the principal axes 
of strain, and for small deformations el, e2, e3 are the principal components of 
strain. Thus with the co-ordinate system used in (29 a) with axes along the ellip- 
soid axes, the elastic part of the stress has no shear components and the normal 
stress differences are 

(52) 

~ 1 1 +  ~ 2 2  - 2 ~ 3 3  = 2~1{3(el+ + W>, (53) 

P11- P22 = 2Pl{(% - e,) + o(e)>, 

where p1 is the rigidity. 
Now the only components of the rate of strain are eF2, e(,ll) as given by (30), so 

the viscous part of the stress which is proportional to the rate of strain has only 
the components 

where rl is a constant: the ‘viscosity’ of the material. Thus equations (52), (53), 
(54) together apply to the material of the spheres undergoing the deformation 
(29a), so equations (377, (38), (42) can be written 

(54) Pl, = P21 = -71[(a2, - 4)  VI/%%, 

2yl{(el- e,)+o(e)} =5qoI~sin20,  (55 )  
2p1{3(e1 + e2)  + o(e)} = 5 7 , J ~  sin 28, (56) 
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Also, since the deformation is small, equation (41) may be written 

y =  --{ ft 1 + W ) K ,  158) 

and the following results can then be obtained from (55) and (57) after substi- 
tuting the expressions for I and K given by (49) and (51): 

sin 20 = {el - e2 + o ( e ) } / m ,  

cos 20 = 7{e1 - e2 + o(e )> /g ,  

el - e2 = a ~ / (  1 + 7 2  ~ 2 ) +  + o(e) ,  

where = 530/2~1, 7 = (3~0+271)/2~1. 

Furthermore, it follows from (55) and (56) with substitution of the expressions 
for I and J given by (49) and (50) and use of (48), that 

e,+e2 = o(e ) ,  e3 = o(e) .  (63) 

It appears from this equation together with (61) that the quantity e appearing in 
the order terms may be written as 

e = &K/(  1 + 7 2 ~ 2 ) 3 .  (64) 

This completes the first-order solution for 0, a,, a2, v. 
It may be noted that when K is small, equations (go), (61), (62) give 

0.757, + 0.57, 6 = K +  .... 
4 Pl 

Now Cerf (1951) has investigated the case of a suspension of spheres (with the 
same special viscoelastic properties) undergoing a small rate of shear K. His equa- 
tion (I1 55) for 0 differs from the above in that the coefficient of 7, appears as 1-25 
instead of 0.75. This is the result of his omission of one of the terms in the ex- 
pression (26) for the surface force (which has already been mentioned). It would 
therefore appear that some correction is necessary to his formulae for the flow- 
birefringence of the suspension. 

Equations (44)-( 46) can now be used to obtain expressions for the stress com- 
ponents in a suspension undergoing the motion (27). These may be written 

where A ~ ( K )  represents the excess of the viscosity V ( K )  of the suspension above the 
viscosity 3, of the pure liquid. These equations are of use when the order terms are 
negligible, that is to say when e is much less than unity. This is the case when K 

is very small, and it is also the case for all values of K when 7, % v0 as can be seen 
from (62) and (64). In  the latter case the second term on the right-hand side of 
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(68) is not superfluous: when TK is of order unity or greater, that term is of order 
e and hence of higher order of magnitude than the third term. 

It is of interest to compare these results with the expressions for the dynamic 
rigidity ,u‘(o) and dynamic viscosity $ ( w )  of the suspension under sinusoidal rate 
of strain of small amplitude and of frequency w/2n. These can be obtained from 
Cerf’s (1952) results for the small oscillatory motion of this type of suspension. 
They are 

where Ay‘(w) is the excess of the dynamic viscosity of the suspension above the 
viscosity yo of the liquid. Thus when K is very small or ql 3 7,’ the stress com- 
ponents in steady laminar flow may be expressed approximately in terms of the 
dynamic functions by the relations 

6. Special properties for the spheres, large deformations 
When conditions in laminar flow are such that the deformation of the spheres 

is large, it  is not possible to use the expansions (49)-(51) for I ,  J ,  K ,  nor is it 
possible to use first-order expressions for the stress components in the material 
of the spheres. Numerical calculations can be made, however, provided the visco- 
elastic properties of the spheres are fully specified. There is considerable latitude 
in such specification, and only two cases will be considered here in order to form 
some idea of the range of validity of the results already obtained for small de- 
formations. In  both cases, the stress in the material of the deformed spheres is 
supposed to be the sum of the stress which would exist in a purely elastic material 
under the same strain plus an addition proportional to the rate of strain. The 
viscoelastic properties are thus specialized in the same way as in the preceding 
section, but here the strain-energy function W of the purely elastic material must 
be specified. For the two cases it is supposed that 

and 
(74)  

(75) 

where Il and I, are the first and second strain invariants. The first strain-energy 
function is of the type given by the theory of ideal rubber-elasticity, while the 
second gives a very different stress-strain relationship under large deformations. 

When the material of the spheres undergoes the deformation (29 a) ,  the normal 
stress differences depend only on the strain energy function. For type A they are 

(76) 

(77) 

241-9322 = P l ( 4  - 4 9 7  

9311 +P22 - 2P33 = P l ( 4  + a; - [2/+41). 
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Two equations are obtained by inserting these expressions in (37) and (38), and 
these can be combined to give 

a~ sin 26' = (a; + aE)/2I, (79) 

where is defined by (62). The components of shear stress are given as before by 
(54), and with (42) this gives (57) again. Elimination of v between (41) and (57) 
gives 

where 7 is defined by (62). The solution of the problem involves the determination 
of 8, a,, a2 from these three equations as functions of VK for the given value of the 
ratio 7/a. 

It is simplest to start with a chosen value of a, and solve (78) numerically for 
a2, and the corresponding values of CTK and 6' are then obtainable from (79) and 
(80). The calculation is repeated for other values of a,. It is necessary, of course, 
to have available numerical values of I ,  J ,  and K which are functions of both a, 
and a2. For the present work, it was found to be sufficient to prepare graphs of 
I ,  J ,  K against a1 for the three cases a$ = 0*8/a,, l/a,, 1.3/a1, and since the func- 
tions are rather insensitive to changes in a2 linear interpolation and extrapolation 
could be used. Successive approximations are necessary in the calculation of a2 
by means of (78), but the process is rapid if a start is made by setting a2 = l/a, 
in the term on the right-hand side of that equation. Once 8, a2 and V K  have been 
determined for a set of values of a,, the normal stress differences and viscosity of 
the suspension can be obtained from (44)-(46) and plotted as functions of a~ or 
7~ for the given value of the ratio r/a. 

For type B, equations (76) and (77) have to be replaced by 

P11-Pzz = P l ( G 2  - ai2), 

p,, +pz2 - 2p33 = ,ul(2a;a; - ai2 - az2). 

(81) 

( 8 2 )  

The appropriate alterations are made to (78) and (79) and the calculations are 
carried out as before. 

There is, of course, little difference in the viscosity of the suspension calculated 
using either type of viscoelasticity when 7 is large compared with V ( T , I , ~  7,). 
Even when r is only twice a(7, = 3.57,) the difference is quite small as can be 
seen from the curves of A ~ ( K )  plotted against 7~ in figure 1. Furthermore, both 
curves are fairly close to the curve for A ~ ' ( K )  calculated from (70), and this shows 
that (73) is still a reasonable approximation. However, for T = a (7, = 7,) a con- 
siderable separation of all three curves takes place when 7 K  is greater than unity. 
The normal stress differences in the suspension for types A and B also remain close 
down to 7 = 2a, but here they depart considerably from values calculated from 
(7 1) and (72). In  figure 2 ,  P,, - PZ2 and PS3 - PZ2 are plotted against 7~ for the case 
of 7 = 6a(y ,  = 13.57,) and the differences between types A and B cannot be 
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FIGURE 1. Increase of steady-rate viscosity & ( K )  produced by presence of spheres with 
types A and B viscoelasticity, shown as functions of T K .  Broken line calculated from dy- 
namic viscosity function using equations (70) and (73). T = 20(7, = 3.57,) in all cases. 
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FIGURE 2. Normal stress differences P,, - Pzz (upper full line) and Pi3 - Pzz (lower full line) 
produced by presence of spheres with either types A or B viscoelasticity, shown as func- 
tions of TK. Broken lines calculated from dynamic rigidity function using equations (69), 
(71) and (72). T = 6a(v1 = 13.57,) in all cases. 
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shown as they never amount to as much as 2%. On the other hand, there is 
appreciable departure even here from the curves given by (7 1) and (72 ) ,  indicating 
that the range of validity of those equations is more restricted than that of (73). 

7. General properties for the spheres, small deformations 
The results of the last section illustrate the extent of the departure of the stress 

components in the suspension from the formulae (71), (72 ) ,  (73) when the de- 
formation of the spheres is large. In  both $05 and 6 ,  however, it has been assumed 
that the viscoelastic properties of the spheres are such that the stress can be 
separated into elastic and viscous parts. This section is concerned with the 
laminar flow of a suspension of spheres which have general viscoelastic properties, 
but once more under the restriction that the deformation of the spheres is small. 
Thus equations (49), (50) ,  (51) are still applicable, and the theory of first-order 
viscoelasticity may be applied to determine the stress in the material of the 
spheres. That theory is usually formulated using a co-ordinate system chosen so 
that the displacement of particles of the material is small. Such a system may be 
obtained from the fixed system used in (29a) by rotating the xl- and x2-axes with 
angular velocity v about the x3-axis. On transforming to this system, the non- 
zero components of the strain tensor for infinitesimal deformations are found to 
be 

ell(t) = g(e, + e2) + +(el - e,) cos 2vt, (83) 

e2,(t) = *(el + e,) - +(el - e2)  cos 2vt, (84) 

e33( t )  = - - e27 (85) 
e12(t) = e2,(t) = - *(el- e2) sin 2vt, (86) 

where t is time measured from an instant at which fixed and rotating axes co- 
incide. The strain may therefore be divided into three deviatoric parts, one vary- 
ing as cos 2vt, one independent of time and one varying as sin 2vt; and for first- 
order viscoelasticity the stress is the sum of the stresses calculated for each 
separately. Using equations (1) and ( 2 )  for the material of the spheres, the follow- 
ing expressions are obtained for the stress components at t = 0: 

P11-1322 = 2 P ; P )  {el - e2 + o(e)>, 

P12 = P21 = - 27;(2v) 21, {el - e2 + O M > ,  

(87) 

(88) 

(89) 

pl1 + P~~ - 2 ~ 3 3  = ~ P ; ( O )  N e l  + e2) + o(e)>, 

where ,u;(w) and q;(w) represent the dynamic rigidity and viscosity of the material 
of the spheres a t  a frequency w/2n. These equations have been derived for the 
rotating co-ordinate system a t  the instant at  which it coincides with the fixed 
system and, since that instant has been chosen arbitrarily, they apply a t  all 
times in the fixed system. 

Insertion of the first and last of the above expressions in (37) and (42 )  gives 
equations identical with (55) and (57)  except that ,ul is replaced by p i ( 2 v )  and 
ql by 7,((2v). Hence (59), (60) ,  (61) still hold if the same replacements are made in 
the expressions for v and T given by (62) .  Furthermore, (58) still applies and 2v 
can be replaced by K in these expressions without affecting the order terms. Now 
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(66), (67), (68) follow from (59), (60), (61), so they apply here when ,ul is replaced 
by p ; ( ~ )  and (r, 7 are taken to be the functions 

fT = 5 r o / 2 , u i ( K ) ,  7 = (3%+ 2T;(W2PU;(4. (90) 

Insertion of (88) in (38) gives an equation identical with (56 )  except that ,ul is 
here replaced by ,uU;(O). This can be used with the equation obtained by replacing 
,ul by LC;(K) in (55) to obtain a result for el+ e2 corresponding to (63). In  fact, if 
,ui(~) is of the same order as ,uU;(O) that equation still applies. Measurements on 

1 *o 

0 1 2 3 4 5 

7 0  fu 

FIGURE 3. Ascending and descending full lines show respectively the dynamic rigidity 
p'(w) and increase in dynamic viscosity Av'(w) produced by presence of spheres having 
Kirkwood-type viscoelasticity with ~,,p;(0) = 3-57,,. Broken lines are corresponding curves 
for case when spheres have constant rigidity and viscosity (vl = 3.53,,), with r w  as 
abscissae. 

real solids, however, often give values of ,uU;(w) which increase slowly with w up 
t o  values much greater than ,uL;(O). In  order to allow for this effect, the largest 
term involving the ratio p i ( ~ ) / p ; ( O )  has to be retained in the expression for el+ e2 
which becomes 

el + e2 = +{,ui(K)/,u;(~)l(el- e2I2 + o(4. 

e = +[m/(l + T ~ K ~ ) * ] ( ~  + 4 & ~ ( ~ ) / , u ; ( O ) ] [ ~ K / ( l  + T ~ K ~ ) ~ ] ) .  

(91) 

It then follows from (61) that el is numerically larger than e2 and e3, so e may be 
written 

( 92) 

Thus e is much less than unity if K is very small and also if 7/g (or ~ ~ ( K ) / ~ ~ )  is much 
greater than unity and at least of order ,ui(~)/pi(O). 
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Now if the suspension is subjected to sinusoidal shear stress of frequency 
w/2n and small amplitude, the surface forces on the spheres vary sinusoidally 
with the same frequency and the stress-strain relation for their material is given 
by equations (1) and (2). This relation is determined by the values of pi(w) and 
v i ( w ) ,  and for any particular value of w it is identical with that for a material 
having constant rigidity ,ul and viscosity ql of corresponding values. Equations 
(69) and (70) for the dynamic rigidity and viscosity of the suspension therefore 
hold in the general case provided p1 is replaced by ,u;(w) and CT, r are taken to be 
functions of w of the forms given by (90). Thus equations (71), (72), (73), which 
give the stress components of the suspension in steady laminar flow in terms of 
its dynamic rigidity and viscosity functions, hold in the general case provided 
either K is very small or T , J ~ ( K ) / ~ ~  is sufficiently large. 

It may be noted that the forms of the dynamic rigidity and viscosity functions 
of the suspension depend markedly upon the type of viscoelasticity possessed by 
the spheres. For example, figure 3 shows these functions calculated for a case in 
which the material of the spheres has the simple retardation-time spectrum 
proposed by Kirkwood (1946) for polymers in bulk. Here the viscosity T~ of the 
suspending liquid has been chosen so that r,,p;(O) is equal to 3.5% where ro is the 
constant which characterizes the spread of the Kirkwood spectrum. The curves 
are compared with those for a suspension of spheres with constant rigidity pl and 
viscosity rll, the latter being chosen equal to 3.5v0. 

8. A suspension undergoing steady elongation 
Here a quite different type of motion will be considered: that in which the 

suspension is being extended at a constant fractional rate 5 in the xl-direction, 
the fractional contractions in the other two directions being equal. Such motion 
can be produced by the rapid extension of a cylinder of the liquid if it is sufficiently 
viscous. For the solution of the problem it is necessary first to consider a single 
sphere in a sea of pure liquid which has the undisturbed motion 

v; = CX1, v; = -QCx2, v; = -gx3. (93) 
A steady-state solution is sought in which the sphere is deformed into a 

spheroid (with its axis of symmetry along the xl-axis) without rotation of its 
material. Since there is no motion at  its surface, the spheroid is effectively rigid 
and the surface force is given by (15). Here the only non-zero components of 
Ai, can be seen from (17) and (19) to be 

where gi is the integral of the type (18) calculated for an ellipsoid having 
a2 = a3 = a$z. Thus the surface force is such as to balance a homogeneous internal 
stress with non-zero components pll, p22, p33 such that 

All = +(C/93, A22 = A 3 3  = -%(C/93, (94) 

p11-P22 = p11-p33 = 2?O(C/gi)* (95) 

If the viscoelasticity of the sphere is of the type A considered in $6, the stress 
components are simply obtained from the strain-energy function (74) since there 
is no viscous contribution when the deformation is static. Thus 

pll-P22 = P11-p33 = (96) 
19 Fluid Mech. 28 
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On the other hand, if the sphere has type B viscoelasticity, the strain-energy 
function (75) gives 

On combining these results with (95) it is found that for type A 

i%1-%)22 = p11-2333 = h [ a l -  (97) 

Values of gi are calculated for a suitable range of a, and corresponding values of 
UC are then obtained from the above equations. 

The stress in the suspension is given by (9) with p$, set equal to p i ,  and E$2 
set equal to zero. The non-zero components of the rate of strain of the suspension 
are obtained from (93) as 

(100) E(lf 11 - - g-, EL;) = E& = - ig-. 
Thus with (95) it is found that 

This stress difference is equal to the tension necessary to extend a cylinder of the 
suspension with a free curved surface, and the elongational viscosity 7,is obtained 
by dividing it by the rate of elongation 5. The excess AT, of this quantity above 
the elongational viscosity of the pure liquid 37, is thus given by 

Aye = 2Tdcld). (102) 

From the sets of values of gi with corresponding values of C T ~  already obtained, 
graphs of Aqe/37,c against a(; have been plotted in figure 4. 

There are no real solutions of (98) for a1 when CTC exceeds 0.83. This implies 
that no steady state in which the deformed spheres keep a fixed spheroidal shape 
can exist when acis greater than that value. On the other hand there are two real 
solutions for a, when it lies below 0.83, and the peculiar form of the type A curve 
in figure 4 results from this. The upper part of the curve, corresponding to the 
higher of the two values of a,, is shown as a broken curve as it represents states 
which are not attained when a steady elongational motion having UC less than 
0.83 is imposed on a suspension initially at  rest. The same pecularities occur with 
type B, but the maximum value of ~ C f o r  a steady state is 0.31. 

A steady state exists for sufficiently small values of cr5 whatever the form of the 
strain-energy function. Thus equation (96) can be generalized by replacing the 
bracket term with 3e1 + o(el) where el = a1 - 1. For small values of el 

(103) 

el = cC+o(e , ) .  (104) 

7,/3To = 1+&+&cC+CO(UC). (105) 

U.# - 1--3e - 3  2 
4 2 - 7 1 7e1++(e3 .  

With the same bracket substitution equation (98) then gives the real solution 

The elongational viscosity is obtained from (101) or (102) as 

When UC is small, this gives the straight line shown in figure 4. 
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The discussion has here been limited to the case of spheres having the special 
property that the stress can be represented as the sum of separate elastic and 
viscous parts. The results are nevertheless of general application, because only 
the static properties are relevant. Thus the calculations made for types A and B 
viscoelasticity apply to all cases in which the static elasticity has a strain-energy 
function of the form (74) or (75), and (104) and (105) apply in general if CT is 
replaced by CT( 0). 

25 

20 

15 

0 

CrJ 
s 
73 
a" 

10 

5 

0 

I 
l B  

I 
" I  

I 
\ 

025 0.5 075 1 
r5 

FIUURE 4. Increase in elongational viscosity by,  produced by presence of spheres with 
types A and B viscoelasticity, shown as functions of a[. Straight line is relation given by 
theory of simple fluids with fading memory for very small rates of elongation 5. 

9. Discussion of the results 
The approximate relations (71), (72), (73) express the stress components in 

steady laminar flow in terms of the dynamic rigidity and viscosity functions of 
the suspension. These functions are given in general by (69) and (70) with pl  
replaced by pU;(w) and CT, 7 taken to be functions of w of the forms given by (90). 
The relations become accurate if the rate of shear is sufficiently small or if the 
ratio of the dynamic viscosity of the spheres to the viscosity of the liquid is 
sufficiently large. They are of interest in connexion with observations on polymer 
solutions made by Padden & DeWitt (1954), DeWitt, Markovitz, Padden & 

19-2 
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Zapas (1955) and Markovitz & Williamson (1957). These authors have noted the 
similarity of form between the steady-state and dynamic viscosity functions and 
between the normal stress difference functions and the dynamic rigidity function. 

Equation (71) does not express an entirely new result: it has been shown by 
Coleman & Markovitz (1964) to hold generally for simple fluids with fading 
memory when the rate of shear is small. By combining (71) and (72) it  is found 
that 

p33 - p22 = w,, - P22). (106) 

This relation is of interest because it has sometimes been maintained that there 
are physical reasons for supposing that P33 should be equal to Pz2 in any elasto- 
viscous liquid. 

It may be noted that if a suspension of spheres is to be used as a model for a 
polymer solution, it is not sufficient to assume the simple viscoelastic properties 
for the spheres used in $55 and 6. Under small deformation, spheres with these 
properties have a single retardation time, and the dynamic rigidity and viscosity 
functions of the suspension have simple forms such as those shown by the broken 
lines in figure 3. The observed forms of these functions for polymer solutions are 
much more like those calculated using a broad distribution of retardation times 
for the material of the spheres and shown by the full lines in figure 3. 

In  the problem of the steady elongation of a suspension, a solution exists in 
which the spheres suffer a static deformation into spheroids, provided the rate of 
elongation cis sufficiently small. The elongational viscosity is then given by (105): 
a formula which may alternatively be deduced from a general result for simple 
fluids with fading memory given by the author (Roscoe 1965) taken together 
with the present results for the normal stress differences in steady laminar flow. 
Two special cases have been investigated for finite values of 5, and in each it was 
found that no such solution exists when 6 exceeds a critical value. This implies 
that if the suspension is subjected to a steady elongation in excess of the critical 
value, the spheres suffer a deformation which increases continuously with time. 
There is here a contrast with the case of steady laminar flow where the material 
of each sphere rotates continuously within an ellipsoidal boundary of fixed dimen- 
sions and orientation, the ellipticity of the boundary being small for all rates of 
shear if the ratio of the dynamic viscosity of the spheres to the viscosity of the 
liquid is sufficiently high. These results suggest that for polymer solutions, rapid 
elongation should be more effective than rapid shearing in uncoiling (and in some 
special cases rupturing) the polymer chains. 

The method of determining the macroscopic stress in a suspension, based on 
equations (9) and (26), has only been applied here to steady laminar flow and 
steady elongation. The results of the former case can be applied to all visco- 
metric flows, subject to the condition given in the last paragraph of $ 2 .  Other 
simple problems can be solved by the same method, as for example the case of 
small oscillatory deformation. The solution for the latter problem has not been 
given here since the basic results have already been obtained by Cerf (1952). For 
the solution of more complicated problems it would be necessary to derive the 
general constitutive equation for the suspension from (9) and (26). It must be 



Suspension of viscoelastic spheres 293 

remembered, however, that when the deformation of the spheres is large, the 
tensor Aik depends in a complicated way on the axial ratios a,, a2, a3, and a 
numerical calculation involving successive approximations has to be used even 
in the case of steady laminar flow. The derivation of an exact constitutive equa- 
tion would therefore seem to be an intractable problem. 
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